Home > News > Professor Pablo Iglesias to give seminar March 8, 2018

Professor Pablo Iglesias to give seminar March 8, 2018

Nancy Davis • DATE: February 27, 2018

Professor Pablo Iglesias to give seminar March 8, 2018

Dr. Pablo Iglesias

The Bioengineering Program, co-sponsored by the Department of Applied and Computational Mathematics and Statistics, present:

Edward J. Schaefer Professor of Electrical Engineering
Department of Electrical & Computer Engineering
The Johns Hopkins University


Date: March 8, 2018 in B01 McCourtney Hall
Time: 11:30 am to 12:30 pm (Coffee and tea served at 11:10 am)


The directed motion of cells in response to chemical gradients requires the coordinated action of three different and separable processes: motility, gradient sensing and polarization. Much effort has been expended understanding each of these processes, and numerous mathematical models have been proposed that explain each one. In this talk I will present a comprehensive model that explains all three aspects of chemotaxis. The central element is the presence of a biased excitable system. This model takes into account reports that the actin cytoskeleton and other signaling elements in motile cells have many of the hallmarks of an excitable medium, including the presence of propagating waves. This excitable behavior can account for the spontaneous migration of cells. We suggest that the chemoattractant-mediated signaling can bias excitability, thus providing a means by which cell motility can be directed. We also provide a mechanism for cell polarity that can be incorporated into the existing framework. Finally, we show that the model predicts a number of other possible dynamic behaviors, and demonstrate how these behaviors can be induced in live cells.

Iglesias Image 2


Pablo A. Iglesias was born in Caracas, Venezuela in 1964.  He received the B.A.Sc. degree in Engineering Science from the University of Toronto in 1987, and the Ph.D. degree in Control Engineering from Cambridge University in 1991. Since then he has been on the faculty of the Johns Hopkins University, where he is currently the Edward J. Schaefer Professor of Electrical Engineering. He also holds appointments in the Departments of Biomedical Engineering, and Applied Mathematics & Statistics as well as the Department of Cell Biology in the Johns Hopkins School of Medicine. He has had visiting appointments at Lund University (Automatic Control), The Weizmann Institute of Science (Mathematics), the California Institute of Technology (Control and Dynamical Systems), and the Max-Planck Institute for the Physics of Complex Systems in Dresden, Germany

Dr. Iglesias has authored over 150 research articles as well as two books: Minimum Entropy Control for Time-Varying Systems (Birkhäuser) and Control Theory and Systems Biology (MIT Press).  He has received a number of awards for both research (the Charles E. Ives Best Paper award for the Journal of Imaging Technology) and teaching (the George E. Owen Teaching Award at Johns Hopkins University) and also named a Distinguished lecturer for the IEEE Control Systems Society. He is a Fellow of the IEEE.

Dr. Iglesias’s research focuses on the use of control and information theory to study biological signal transduction pathways. Among his research interests are: understanding how cells interpret directional cues to guide cell motion, the regulatory mechanisms that control cell division, and the sensing and actuation that enable cells to maintain lipid homeostasis.